hybrid-vocal-classifier Documentation
Release 0.1.0

David Nicholson

Dec 27, 2021

Contents

1 a Python machine learning library for animal vocalizations and bioacoustics 1

2 Backstory 21

CHAPTER 1

a Python machine learning library for animal vocalizations and
bioacoustics

the hybrid-vocal-classifier library (hvc for short) makes it easier for researchers studying animal vocal-
izations and bioacoustics to apply machine learning algorithms to their data. Its focus on automating the sort of
annotations often used by researchers studying vocal learning sets hvc apart from more general software tools for
bioacoustics.

In addition to automating annotation of data, hvc aims to make it easy for you to compare different machine learning
models that researchers have proposed, using the data you have in your lab, so you can see for yourself which one
works best for your needs. A related goal is to help you figure out just how much data you have to label to get “good
enough” accuracy for your analyses.

You can think of hvc as a high-level wrapper around the scikit-learn library, plus built-in functionality for working
with annotated animal sounds.

Running hvc requires almost no coding. Users write simple Python scripts, and most will have to only adapt the
examples from the documentation. Large batch jobs can be run with configuration files written in YAML, an easy-to-
read format commonly used for configuration files. Again, most users will only have to copy the example . ym1 files
and then change a couple of options to work with their own datasets.

https://www.sciencedirect.com/science/article/pii/S0896627319308396
http://scikit-learn.org/stable/

hybrid-vocal-classifier Documentation, Release 0.1.0

This code sample gives a high-level view of how you run hvc:

import hvec

extract features from audio to train machine learning models
hvc.extract ('extract_config.yml') # using .yml config file

train models/classifiers and select model with best accuracy
hvc.select ('select_config.yml")

use trained model to predict labels for unlabeled data
hvc.predict ('predict_config.yml')

1.1 Advantages of hybrid-vocal-classifier

* frees up hundreds of hours spent annotating data by hand
» completely open source, free
* makes it easy to compare multiple machine learning algorithms

* almost no coding required, configurable with text files

built on top of Python packages road-tested by the greater data-science community: numpy , scipy , mat-
plotlib , scikit-learn , keras

1.2 Documentation

1.2.1 Tutorial

“autolabeling” with k-Nearest Neighbors

This tutorial will walk you through using hvc to automatically label Bengalese finch song with the k-Nearest Neigh-
bors algorithm. We call this the “autolabel” workflow (for more detail after going through this tutorial, please see
autolabel in the workflows: how to work with hvc section of How-To Guides.)

There’s three main modules in hvc that you will use in the autolabel workflow: ext ract to extract features, select
to select a model, and predict to predict labels for unlabeled data. The steps below walk you through doing that.

A convenient way to work through this tutorial would be in iPython, so you might first start iPython from the comm-
mand line, like this:

’(my—hvc—environment) $ ipython

iPython is not installed automatically with hvc so you’ll need to install it. If you’re using the conda package manager,
this is as easy as:

’(myfhvcfenvironment) $ conda install ipython

You can also use Jupyter notebooks from the tutorial here:
https://github.com/NickleDave/hybrid-vocal-classifier-tutorial

First you import the library so you can work with it.

2 Chapter 1. a Python machine learning library for animal vocalizations and bioacoustics

http://www.numpy.org/
https://www.scipy.org/scipylib/index.html
https://matplotlib.org/
https://matplotlib.org/
http://scikit-learn.org/stable/
https://keras.io/
https://github.com/NickleDave/hybrid-vocal-classifier-tutorial

hybrid-vocal-classifier Documentation, Release 0.1.0

0. Label a small set of songs to provide training data for the models, typically ~20-40 songs.

Here you would label your own song, using your software of choice (evsonganaly, Sound Analysis Pro, Praat) but for
this example you can download some data that is already hand labeled from a repository.

1. Pick a machine learning algorithm/model and the features used to train the model.

In this case we use the k-Nearest Neighbors (k-NN) algorithm. This algorithm is quick to apply to data but at least
one empirical study shows that it does not give the best accuracy on Bengalese finch song. You’ll use the features built
into the library that have been tested with k-NN. These features are based in part on those developed by the Troyer lab
(http://www.utsa.edu/troyerlab/software.html).

You specify the models and features in a configuration file (“config” for short). More information about all the
parameters in the config file can be found on the page :refiwriting—extract-config. For now you can just
copy the text below and save it in some file. The config is written in YAML, a language for writing data structures
(such as different types of variables in a programming language).

extract:
spect_params:
ref: evsonganaly
segment_params:
threshold: 1500 # arbitrary units of amplitude
min_syl_dur: 0.01 # ms
min_silent_dur: 0.006 # ms

todo_1list:
bird_ID : gy6or6
file_format: evtaf
feature_group:
- knn
data_dirs:
- .\gy6or6\032612

output_dir: .\gy6or6\

labelset: iabcdefghijk

2. Extract features for that model from song files that will be used to train the model.

You call the ext ract module and pass it the name of the yaml config file as an argument. In the example below,
the config file was saved as 'gy6or6_autolabel_example.knn.extract.config.yml'.

3. Pick the hyperparameters used by the algorithm as it trains the model on the data.

Now we use a convenience function to get an estimate of what value for our hyperparameters will give us the best
accuracy when we train our machine learning models. The k-Nearest Neighbors algorithm has one main hyperparam-
eter, the number of neighbors k in feature space that we look at to determine the label for a new syllable we are trying
to classify.

4. Train, i.e., fit the model to the data

1.2. Documentation 3

http://conference.scipy.org/proceedings/scipy2016/david_nicholson.html
http://www.utsa.edu/troyerlab/software.html

hybrid-vocal-classifier Documentation, Release 0.1.0

5. Select the best model based on some measure of accuracy.

Again we use a config file. In the config file, we specify the name of the feature file saved by hvc.extract. Again
you can just copy and paste the text below.

The key things to modify here are the hyperparameter :math:‘k‘ and the name of the feature file. You will
choose the value for :math:‘k‘ based on your results from running ‘‘hvc.utils.find_best_k‘‘. You will get
the name of the feature file from the directory created when you ran ‘‘hvc.extract‘‘. The name of the di-
rectory will be something like ‘‘extract_output_bird_ID_date‘‘. Make sure that on the line that says ‘‘fea-
ture_file:*‘, you paste the name of the feature file after the colon. The name will have a format like ‘‘sum-
mary_file_bird_ID_date‘‘.

select:

num_replicates: 10
num_train_samples:

start : 50
stop : 250
step : 50

num_test_samples: 500

models:
model_ name: knn
feature_list_indices: [0,1,2,3,4,5,6,7,8]
hyperparameters:
k : 4

todo_1list:
- #1
feature_file: .\gy6or6\extract_output_171031_214453\summary_feature_file_
—created_171031_214642
output_dir: .\gy6or6\

Now you can use hvc.select to select the best model. hvc.select takes the name of the config file as an
argument, which in this example is gy6or6_autolabel .example.select.knn.config.yml.

6. Using the fit model, predict labels for unlabeled data.

Here you also use a config file.

** The key things to modify here is the model _meta_file parameter. hvc.select will also have created a
directory, and for each model it fit, it will have saved two files, a .model file and a .meta file. The .meta file
contains all the metadata that hvc needs to be able to use the .model file. You choose whichever .meta file gave
you the best results according to the metric you’re using, e.g. the default of average accuracy across syllable classes.
You also need to specify the directories with unlabeled data, under the data_dirs section.**

predict:
todo_1list:
bird_ID : gy6orb
file_format: evtaf
data_dirs:
— C:\Users\Seymour Snyder\Documents\example_song\032612
model_meta_file: .\gy6or6\select_output_171031_215004\knn_k4\knn_200samples_
—replicate9.meta

(continues on next page)

4 Chapter 1. a Python machine learning library for animal vocalizations and bioacoustics

hybrid-vocal-classifier Documentation, Release 0.1.0

(continued from previous page)

output_dir: .\gy6or6
predict_proba: True
convert: notmat

1. In a text editor, open

2. On the line that says model_meta_file:, after the colon, paste the name of a meta file from the select
output. The name will have a format like summary_file_bird ID_date.

3. Below the line that says data_dirs:, after the dash, add the path to the other folder of data that you down-
loaded.

Lastly you use the hvc.predict module to predict labels for new syllables. hvc.predict also takes a config
file name as an argument. In this example the file name is gy6or6_autolabel.example.knn.predict.
config.yml.

parsed predict config

Changing to data directory: C:/Data/gy6or6_all_files/032612
Processing audio file 1 of 39.

Processing audio file 2 of 39.

Processing audio file 39 of 39.
predicting labels for features in file: features_from_032612_created_171206_013759
converting to .not.mat files

Congratulations! You have auto-labeled an entire day’s worth of data in just a few minutes!

1.2.2 How-To Guides

This section provides more detailed “how-to” guides to consult.

workflows: how to work with hve

There are two main workflows for using hvc. Click on the links below for a high-level overview of each:
1. autolabel: for researchers that want to automate labeling of vocalizations.
2. autocompare: for researchers that want to compare different machine learning algorithms.

how to write YAML configuration files

Pages here explain in detail how to write YAML configuration files.

how to write yaml files used by the select module

As described in the introduction, a crucial step in using hybrid vocal classifier is selecting which models to use. This
can be done in an automated way using the select module. Like the extract and predict modules, the select module
works by parsing configuration files. Below the steps are outlined in writing the configuration files in yaml format.

1.2. Documentation 5

hybrid-vocal-classifier Documentation, Release 0.1.0

what the select module gets out of the config file: models and data

There are two required elements in a select config file, that
correspond to the two main things that the select module needs to know:
1. models: what models to test. A Python list of dictionaries, as described below.

2. todo_list: where the data is to train and test those models. Another Python list of dictionaries, also
described below.

The parser that parses the select config file is written so that you don’t have to repeat yourself. You can put one models
list at the top of the file, and then for each dataset in the todo_list, the select module will train and test all the models
that are specified in that top-level models list. Like so:

..include

However you can also define a models dictionary for each fodo_list, in case you need to test different models for
different datasets, and want to run them all from one script.

..include

the models list

To be parsed correctly, the models list needs to have the right structure. In yaml terminology, this is a list. Once parsed
into Python, it becomes a list of dictionaries. For that reason the structure is described in terms of the keys and values
required for each dictionary. Each dictionary in the list represents one model that the select module will test. There
are a couple of required keys for each model dictionary.

required key 1: hyperparameters

These models are found using machine learning algorithms. A model can be thought of as a function with parameters,
like the beta terms of a linear regression. To find these parameters, the algorithm must train on the data, and this
training also has parameters, for example the number of neighbors used by the K-nearest neighbor algorithm. These
parameters of the algorithm are known as hyperparameters to distinguish them from the parameters found by the
algorithm.

the todo list

1.2.3 Reference

yaml config

spec for yaml config files

This document specifies the structure of HVC config files written in yaml. It is a painfully dry document that exists
to guide the project code, not to teach someone how to write HVC config files. For a gentle introduction to writing
config files, please see the writing_config_files.

Essentially, each config file specifies a list of jobs. Each job in a list will typically correspond to data files from one
bird.

Config files consist of three sections:

1. global_config: parameters that apply to all jobs

6 Chapter 1. a Python machine learning library for animal vocalizations and bioacoustics

hybrid-vocal-classifier Documentation, Release 0.1.0

2. model_selection: list of jobs for selecting machine learning models
3. prediction: list of jobs that apply models to unclassified data

global_config As the name implies, parameters in the global_config section apply to all jobs. The global_config is
a dictionary of dictionaries.

Example: ‘“‘ yaml global_config:

spect_params : samp_freq : 32000 # Hz window_size : 512 window_step : 32 freq_cutoffs :
[1000,8000]

neural_net : syl_spect_width : 300

model_selection

model_selection is a list of jobs. Each job is a dictionary. Hence model_selection is a list of dictionaries.

Each job, i.e. each item in the list, is marked with an empty dash. Below each empty dash appear the keys and values
that make up the dictionary.

A job in the ‘model_selection‘ section must include the following keys:
* bird_ID : string, alphanumeric, identifies bird
e train : dictionary with parameters for training dataset
e test : dictionary with parameters for testing dataset - both train and fest contain a list dirs. Each item
in dirs
is a string, and that string must be a path to a directory of audio files (expected to contain
song from the bird bird_ID).

* output_dir : string, directory where output will be saved. HVC

creates a new subfolder in the given directory. - labelset : string, labels used for syllabes. Only syllables
with the labels in labelset will be included in the training and testing

datasets.

**]f a parameter is defined in global_config and then defined again in a job, the value defined in the job takes prece-
dence over the

global_config value, but only for that job.**

(X0

Example: ¢‘‘ yaml model_selection: # list of dictionaries, dash without key next to is a list item so each dictionary is
an item in the list

¢ #i.e. this is dictionary 1 bird_ID : gr41rd51
train :
dirs:
— C:DATAgr41rd51pre_surgery_baseline06-21-12
test :
dirs:
— C:DATAgr41rd51pre_surgery_baseline06-19-12
— C:DATAgr41rd51pre_surgery_baseline06-20-12

1.2. Documentation 7

hybrid-vocal-classifier Documentation, Release 0.1.0

— C:DATAgr41rd51pre_surgery_baseline06-22-12
output_dir: C:DATAgr41rd51
labelset : iabcdefgjkm

spect_params [# not required, but will take precedence over spect_params in global_config] samp_freq :
32000 # Hz window_size : 512 window_step : 32 freq_cutoffs : [1000,10000]

[X13

prediction

Like model_selection, the prediction section is a list of job dictionaries.
A job in the ‘prediction‘ section must include the following keys:
* bird_ID : string, alphanumeric, identifies bird
* model_file : string, a file name. Either a scikit-learn model that
has been ‘pickle‘d or ‘dump‘ed by joblib, or an hdf5 model output by Keras.
¢¢“ yaml prediction:

* bird_ID : gr41rd51 model_file : gr41rd51_svm.pkl

parameters

The parameters listed below can appear in either global_config or a job.
¢ spect_params :
— samp_freq : integer
— window_size : integer
— window_step : integer
— freq_cutoffs : list
* num_train_songs :
— start : integer
— stop : integer
— step : integer
* num_train_samples :
— start : integer
— stop : integer
— step : integer
* models :
— knn
— linsvm

- Svim

8 Chapter 1. a Python machine learning library for animal vocalizations and bioacoustics

hybrid-vocal-classifier Documentation, Release 0.1.0

— neural_net

spec for YAML files to configure feature extraction

This document specifies the structure of HVC config files written in YAML.

structure

Every extract.config.yml file should be written in YAML as a dictionary with (key, value) pairs. In other
words, any YAML file that contains a configuration for feature extraction should define a dictionary named extract
with keys as outlined below.

required key: todo_list

Every extract.config.yml file has exactly one required key at the top level:

todo_1list: list of dicts list where each element is a dict. each dict sets parameters for a ‘job’, typically data
associated with one set of vocalizations.

optional keys

extract.config.yml files may optionally define two other keys at the same level as todo_1list. Those keys
are spect_params and segment_params. As might be expected, spect_params is a dict that contains param-
eters for making spectrograms. The segment_params dict contains parameters for segmenting song. Specifications
for these dictionaries are given below.

When defined at the same level as todo_11ist they are considered “default” and apply to all items in the list. If an
element in fodo_list defines different values for any of these keys, the value assigned in that element takes precedence
over the default value.

specification for dictionaries in todo_1list
required keys

Every dict in a todo_1ist has the following required keys:
* bird_1ID: str for example, b1261b16
e file format: stroneof {'evtaf', "koumura'}

* data_dirs: list of str directories containing data each str must be a valid directory that can be found on
the path for example

— C:\DATA\bl261bl6\pre_surgery_baseline\041912
— C:\DATA\b1l261bl6\pre_surgery_baseline\042012

e output_dir: str directory in which to save output if it doesn’t exist, HVC will create it for example,
C:\DATA\Db1261b16\

* labelset: str string of labels corresponding to labeled segments from which features should be ex-
tracted. Segments with labels not in this str will be ignored. Converted to a list but not necessary to enter
as a list. For example, iabcdef

1.2. Documentation 9

hybrid-vocal-classifier Documentation, Release 0.1.0

Finally, each dict in a todo_11 st must define either feature_list ora feature_group
e feature_list [list] named features. See the list of named features here: named_features
» feature_group [str or list] named group of features, list if more than one group one of { 'knn', 'svm'}

¢ Note that a todo_1list can define both a feature_list and a feature_group. In this case features
from the feature_group are added to the feature_list.

Additional variables are added to the feature files that are output by featureextract.extract to keep track of
which features belong to which feature group.

specification for spect_params and segment_params dictionaries

* spect_params: dict parameters to calculate spectrogram keys correspond to parame-
ters/arguments passed to Spectrogram class for __init . must have either a ref key or the
nperseqg and noverlap keys as defined below:

ref [str]oneof { 'tachibana', 'koumura'} Use spectrogram parameters from
areference. 'tachibana' uses spectrogram parameters from', 'koumura' uses
spectrogram parameters from?.

nperseg [int] numper of samples per segment for FFT, e.g. 512
noverlap [int] number of overlapping samples in each segment
the following keys are all optional for spect_params:

freq cutoffs [two-element list of integers] limits of frequency band to keep, e.g.
[1000,8000] Spectrogram.make keeps the band:

freq_cutoffs[0] >= spectrogram > freq_cutoffs[1]

window [str] window to apply to segments valid strings are 'Hann', 'dpss', None
Hann — Uses np . Hanning with parameter M (window width) set to value of nperseg
dpss — Discrete prolate spheroidal sequence AKA Slepian.

Uses scipy.signal.slepian with M parameter equal to nperseg and width
parameter equal to 4 /nperseg, as in’.

filter_ func [str] filter to apply to raw audio. valid strings are 'diff' or None
"diff' — differential filter, literally np.diff applied to signal as in'. None — no

filter, this is the default

spect_func [str] which function to use for spectrogram. valid strings are
‘scipy’ or ‘mpl’. 'scipy' uses scipy.signal.spectrogram, 'mpl' uses
matplotlib.matlab.specgram. Defaultis 'scipy'.

log_transform spect [bool] if True, applies np.logl0 to spectrogram to increase
range. Default is True.

segment_params: dict parameters for dividing audio into segments, defined below with the following
keys

threshold [int] value above which amplitude is considered part of a segment. default
is 5000.

min_syl_dur [float] minimum duration of a segment. default is 0.02, i.e. 20 ms.

! Tachibana, Ryosuke O., Naoya Oosugi, and Kazuo Okanoya. “Semi-
2 Koumura, Takuya, and Kazuo Okanoya. “Automatic recognition of element

10 Chapter 1. a Python machine learning library for animal vocalizations and bioacoustics

hybrid-vocal-classifier Documentation, Release 0.1.0

min_silent_dur [float] minimum duration of silent gap between segment. default is
0.002, i.e. 2 ms.

example extract.config.yml files

These are some of the extract .config.yml files used for testing, found in hybrid-vocal-classifier/
tests//data_for_tests/config.yml/:

extract:
spect_params:
ref: tachibana
segment_params:
threshold: 1500 # arbitrary units of amplitude
min_syl_dur: 0.01 # ms
min_silent_dur: 0.006 # ms

todo_list:

bird_ID : gy6or6

file format: cbin

feature_group:
- knn

data_dirs:
- ../cbins/gy6or6/032312
- ../cbins/gy6or6/032412

output_dir: replace with tmp_output_dir

labels_to_use: iabcdefghijk

extract:
spect_params:
ref: tachibana
segment_params:
threshold: 1500 # arbitrary units of amplitude
min_syl_dur: 0.01 # ms
min_silent_dur: 0.006 # ms

todo_list:
bird_ID : gy6or6
file_format: cbin
feature_group:
- svm
data_dirs:
- ../cbins/gy6or6/032312
- ../cbins/gy6or6/032412

output_dir: replace with tmp_output_dir

labels_to_use: iabcdefghijk

extract:

spect_params:
ref: koumura

segment_params:

(continues on next page)

1.2. Documentation 11

hybrid-vocal-classifier Documentation, Release 0.1.0

(continued from previous page)

threshold: 1500 # arbitrary units of amplitude
min_syl_dur: 0.01 # ms
min_silent_dur: 0.006 # ms

todo_list:
bird_ID : gyb6or6
file_format: cbin
feature_list:
- flatwindow
data_dirs:
— ../cbins/gy60r6/032312
- ../cbins/gy6or6/032412

output_dir: replace with tmp_output_dir

labels_to_use: iabcdefghijk

references

automatic classification of birdsong elements using a linear support vector machine.” PloS one 9.3 (2014):
€92584.

classes and boundaries in the birdsong with variable sequences.” PloS one 11.7 (2016): e0159188.

spec for YAML files to configure model selection

This document specifies the structure of HVC config files written in YAML.

structure

Every select.config.yml file should be written in YAML as a dictionary with (key, value) pairs. In other words,
any YAML file that contains a configuration for model selection should define a dictionary named select with keys
as outlined below.

required key: todo_list

Every select.config. yml file has exactly one required key at the top level:

todo_1list: list of dicts list where each element is a dict. each dict sets parameters for a ‘job’, typically data
associated with one set of vocalizations.

optional keys

select.config.yml files may optionally define other keys at the same level as todo_11ist. Those keys are:
num_replicates: int number of replicates, i.e. number of folds for cross-validation
num_test_samples: int number of samples from feature file to put in testing set

num_train_samples: int number of samples from feature file to put in training set

12 Chapter 1. a Python machine learning library for animal vocalizations and bioacoustics

hybrid-vocal-classifier Documentation, Release 0.1.0

models: list list of dictionaries that define models to be tested on features

When defined at the same level as todo_11 st they are considered default. If an element in todo_11 st defines
different values for any of these keys, the value assigned in that element takes precedence over the default value.

specification for dictionaries in todo_list
required keys

Every dict in a todo_1list has the following required keys:
e feature_file: strforexample: C:\Data\gy6or6\extract_output_170711_0104\summary_feature_!

e output_dir: str path to directory in which to save output if it doesn’t exist, HVC will create it for
example, C: \DATA\b1261b16\

optional keys

As stated above, these can all be defined at the top level of the file. If they are also defined for any dict in a
todo_11st, then that definition will override the top-level definition.

¢ models: list of dicts dictionary of models, as defined below. Required if not defined at top level of file.
* num_replicates: int number of replicates, i.e. number of folds for cross-validation
* num_test_samples: int number of samples from feature file to put in testing set

* num_train_samples: int number of samples from feature file to put in training set

specification for models list of dicts

Every dict in a models list has the following required keys:
* model_ name: str name of model, e.g. ‘svm’
* hyperparameters: dict with hyperparameters defined for each model

Every dict in a mode1 s list must also specify the features with which to train the model. One of the following is valid,
as specified in validation.yml.

e feature_list_indices: list of ints corresponding to elements in list of feature names in feature_filee.g.,
[0,1,2,5,7]

* feature_group: str name of a feature group: one of { 'knn', 'svm'}

* neuralnet_input: str name of input for am artificial neural net: {'flatwindow'}

example select_config.yml

These are some of the select.config.yml files used for testing, found in hybrid-vocal-classifier/
tests/data_for_tests/config.yml/:

spec for YAML files to configure label prediction

This document specifies the structure of HVC config files written in YAML.

1.2. Documentation 13

hybrid-vocal-classifier Documentation, Release 0.1.0

structure

Every predict.config.yml file should be written in YAML as a dictionary with (key, value) pairs In other words,
any YAML file that contains a configuration for feature extraction should define a dictionary named ‘predict‘ with keys
as outlined below.

required key: todo_list

Every predict.config.yml file has exactly one required key at the top level:

todo_1list: list of dicts list where each element is a dict. each dict sets parameters for a ‘job’, typically data
associated with one set of vocalizations.

specification for dictionaries in todo_1list
required keys

Every dict in a todo_list has the following required keys:
e bird_1ID : str for example, bI26lb16
e file_ format: str {‘evtaf’,’koumura’}

e data_dirs: list of str directories containing data each str must be a valid directory that can be found on
the path for example

- C:\DATA\b1l261bl6\pre_surgery_baseline\041912
— C:\DATA\bl261bl6\pre_surgery_baseline\042012

* model_file: strfilename of machine learning model / neural network that will be used to predict labels
for syllables example: somedir/select_output_170814_005430/knn/knn_100samples_replicate0

e output_dir: str directory in which to save output if it doesn’t exist, HVC will create it for example,
C:\DATA\Db1261bl6\

e predict_proba : bool If True, calculate probabilities for predicted labels.

example predict_config.yml

These are some of the predict.config.yml files used for testing, found in hybrid-vocal-classifier/
tests/data_for_tests/config.yml/:

Features

This section contains information on engineered features that hvc provides for machine learning models.

named features

These features are pre-defined and can be referred to by name in the feature_list of YAML files for extract.

14 Chapter 1. a Python machine learning library for animal vocalizations and bioacoustics

hybrid-vocal-classifier Documentation, Release 0.1.0

feature group Tachibana:

* mean_spectrum

* mean_delta_spectrum : 5-order delta of spectrum
* mean_cepstrum

* mean_delta_cepstrum : 5-order delta of cepstrum
* dur : duration

* mA : additional subset of features listed below

* SpecCentroid

* SpecSpread

* SpecSkewness

* SpecKurtosis

* SpecFlatness

e SpecSlope

* Pitch

* PitchGoodness

s Amp

References

automatic classification of birdsong elements using a linear support vector machine.” PloS one 9.3 (2014):

€92584.
models
k-Nearest Neighbors (kNN)

API reference

hve

hvc package
Subpackages
hvc.features package
Submodules

hvc.features.extract module

1.2. Documentation

15

hybrid-vocal-classifier Documentation, Release 0.1.0

hvc.features.knn module
hvc.features.tachibana module
Module contents
hvc.neuralnet package
Submodules
hvec.neuralnet.conv_models module
hvc.neuralnet.models module
Module contents

hvc.parse package
Submodules
hvc.parse.extract module
hvc.parse.predict module
hvc.parse.select module
Module contents
Submodules

hvc.audiofilelO module
hvc.evfuncs module
hvc.featureextract module
hvc.koumura module
hvc.labelpredict module
hvc.metrics module
hvc.modelselect module

hvc.parseconfig module

16 Chapter 1. a Python machine learning library for animal vocalizations and bioacoustics

hybrid-vocal-classifier Documentation, Release 0.1.0

hvc.randomdotorg module
hvc.utils module

Module contents

1.2.4 Development

This section provides more detail for developers, including:
* Descriptions of how the code base works under the hood

* aroadmap for the project

code base
These pages contain information on the code base and its design, as a reference for development, including
pseudocode-like descriptions of functions to orient someone reading the code.

HVC workflow in detail This document explains in detail how functions and modules work, mainly as a reference
for developers.

Take the example code from the intro notes page: ‘‘‘Python import hvc
hvc.extract(‘extract_config.yml’) hvc.select(‘select_config.yml’) hvc.predict(‘predict_config.yml’) ¢
Here’s a step-by-step outline of what happens under the hood: - import hvc
 automatically imports featureextract, labelpredict, and
modelselect modules
* specifically, the extract, predict, and select functions
from their respective modules
* hvc.extract(‘extract_config.yml’)
* first parse.extract parses the config file
* for each element in todo_list from config + for each data directory datadir in todo_list:
— change to that directory
— get all the audio files in that directory with glob
— for each audo file: + run features.extract.from_file + add extracted features to features_from_all_files
* save all features in an output file
* hvc.select(‘select_config.yml’)

e hvc.predict(‘predict_config.yml’)

parse package, extract module

The extract module parses extract.config.yml files.
Here’s a rough outline of how it works.

parseextract.py contains the following functions: - validate_spect_params - validate_segment_params - _vali-
date_feature_group_and_convert_to_list - _validate_todo_list_dict - validate_yaml

1.2. Documentation 17

hybrid-vocal-classifier Documentation, Release 0.1.0

validate_yaml

validate_yaml is the main function; it gets called by parse.

_validate_todo_list _dict

_validate_todo_list_dict is called by validate_yaml when it finds a key todo_list whose value is a list of dicts.

_validate_feature_group_and_convert_to_list

This function validates feature groups, which are validated differently than feature lists. Feature lists are validated by
making sure every element in the list is a string found within a valid features list, which is a concatenation of all the
features listend in feature_groups.yml in the parse module.

The parsing of a feature_group key is a little more complicated. The first step is to make sure the group or groups
appear in the dictionary of valid feature groups in hvc/parse/feature_groups.yml’. The keys of the dictionary of valid
feature groups are the valid feature group names, and the values of the dictionary are the actual lists of features. If
each ‘str in ‘feature_groupl is s a valid feature group, then the list of features is taken from the dictionary

of valid feature groups. The list is then validated by comparing it to the list of all features in features.yml.

This is to make sure the developer didn’t make a typo. If feature_group is a list of feature group names, then fea-
ture_list will consist of all features from all groups in the list. A vector of the same length as the new feature list
has values that indicate which feature group each element in the new feature list belongs to. This vector is named
feature_list_group_ID. A dict named ftr_group_dict is also returned,

where each key is a name of a feature group and its

corresponding value is the ID number given to that feature group. Using this dict and the identity array, hvc/parse/select
can pull the correct features out of a feature array given a feature group name.

Example: ‘‘Python >>> ftr_tuple = _validate_feature_group_and_convert_to_list(feature_group=[‘knn’,’svm’])

’>>> ftr_tuple[0]

[‘duration group’,’ preceding syllable duration’ ... | # and so on

’>>> ftr_tuple[l]

np.ndarray([0,0,0,0,0,1,1,1,1,1]) # some array with one of two ID numbers

>>> len(ftr_typle[0]) = ftr_tuple[l].shapel-1]

True

’>>> ftr_tuple[2]

{*knn’: 0, ‘svm’: 1} ¢

If a feature_list was passed to this function along with feature_group, the features from the feature groups are appended
to the feature_list, and in the feature_group_ID vector, the original features from the original feature list have a value
of None.

development roadmap

Here’s a list of features with rough timelines.

18 Chapter 1. a Python machine learning library for animal vocalizations and bioacoustics

hybrid-vocal-classifier Documentation, Release 0.1.0

immediate priority

* parsers for different file formats
* automate build

* mostly complete test coverage

not as immediate priority

bells and whistles

1.3 Installation

see install

1.4 Support

If you are having issues, please let us know.

Please post bugs on the Issue Tracker:
https://github.com/NickleDave/hybrid-vocal-classifier/issues
And please ask questions in the users’ group:
https://groups.google.com/forum/?hl=en#!forum/hvc-users/join

1.5 Contribute

¢ Issue Tracker: https://github.com/NickleDave/hybrid-vocal-classifier/issues

* Source Code: https://github.com/NickleDave/hybrid-vocal-classifier/

1.6 License

BSD license.

1.7 Citations, repositories, and related work

If you use this library, please cite its DOI:

To cite the algorithms used, please see the listing in citations.
A list of repositories of birdsong is here: repos
A list of related works is here: related

1.3. Installation

19

https://github.com/NickleDave/hybrid-vocal-classifier/issues
https://groups.google.com/forum/?hl=en#!forum/hvc-users/join
https://github.com/NickleDave/hybrid-vocal-classifier/issues
https://github.com/NickleDave/hybrid-vocal-classifier/
https://doi.org/10.5281/zenodo.844932

hybrid-vocal-classifier Documentation, Release 0.1.0

To suggest or contribute algorithms or repositories:
Please feel free to start an issue on the Github repository
https://github.com/NickleDave/hybrid-vocal-classifier/issues
or comment in the users’ group:
https://groups.google.com/forum/?hl=en#!forum/hvc-users/join

1.8 Code of Conduct

We welcome contributions to the codebase and the documentation, and are happy to help first-time contributors through
the process. Project maintainers and contributors are expected to uphold the code of conduct described here: code-of-
conduct

20 Chapter 1. a Python machine learning library for animal vocalizations and bioacoustics

https://github.com/NickleDave/hybrid-vocal-classifier/issues
https://groups.google.com/forum/?hl=en#!forum/hvc-users/join

CHAPTER 2

Backstory

hvec was originally developed in the Sober lab as a tool to automate annotation of birdsong (as shown in the picture
above). It grew out of a submission to the SciPy 2016 conference and later developed into a library, as presented in
this talk: https://youtu.be/BwNeVNou9-s

21

https://scholarblogs.emory.edu/soberlab/
https://conference.scipy.org/proceedings/scipy2016/david_nicholson.html
https://youtu.be/BwNeVNou9-s

	a Python machine learning library for animal vocalizations and bioacoustics
	Backstory

