

hybrid-vocal-classifier (hvc)

a Python machine learning library for animal vocalizations and bioacoustics

[image: _images/gr41rd41_song.png]
the hybrid-vocal-classifier library (hvc for short)
makes it easier for researchers studying
animal vocalizations and bioacoustics
to apply machine learning algorithms to their data.
Its focus on automating the sort of annotations
often used by researchers studying
vocal learning [https://www.sciencedirect.com/science/article/pii/S0896627319308396]
sets hvc apart from more general software tools for bioacoustics.

In addition to automating annotation of data,
hvc aims to make it easy for you to compare
different machine learning models that researchers have proposed,
using the data you have in your lab,
so you can see for yourself which one works best for your needs.
A related goal is to help you figure out
just how much data you have to label to get “good enough” accuracy for your analyses.

You can think of hvc as a high-level wrapper around
the scikit-learn [http://scikit-learn.org/stable/] library,
plus built-in functionality for working with annotated animal sounds.

Running hvc requires almost no coding.
Users write simple Python scripts, and most will have to only
adapt the examples from the documentation. Large batch jobs can be
run with configuration files written in YAML,
an easy-to-read format commonly used for configuration files.
Again, most users will only have to copy the example .yml files
and then change a couple of options to work with their own datasets.

This code sample gives a high-level view of how you run hvc:

import hvc

extract features from audio to train machine learning models
hvc.extract('extract_config.yml') # using .yml config file
train models/classifiers and select model with best accuracy
hvc.select('select_config.yml')
use trained model to predict labels for unlabeled data
hvc.predict('predict_config.yml')

Advantages of hybrid-vocal-classifier

	frees up hundreds of hours spent annotating data by hand

	completely open source, free

	makes it easy to compare multiple machine learning algorithms

	almost no coding required, configurable with text files

	
	built on top of Python packages road-tested by the greater data-science community:

	numpy [http://www.numpy.org/] , scipy [https://www.scipy.org/scipylib/index.html] ,
matplotlib [https://matplotlib.org/] , scikit-learn [http://scikit-learn.org/stable/] ,
keras [https://keras.io/]

Documentation

	Tutorial

	How-To Guides

	Reference

	Development

Installation

see Installation

Support

If you are having issues, please let us know.

Please post bugs on the Issue Tracker:

https://github.com/NickleDave/hybrid-vocal-classifier/issues

And please ask questions in the users’ group:

https://groups.google.com/forum/?hl=en#!forum/hvc-users/join

Contribute

	Issue Tracker: https://github.com/NickleDave/hybrid-vocal-classifier/issues

	Source Code: https://github.com/NickleDave/hybrid-vocal-classifier/

License

BSD license.

Citations, repositories, and related work

If you use this library, please cite its DOI:

[image: _images/zenodo.1154239.svg]
 [https://doi.org/10.5281/zenodo.844932]
To cite the algorithms used, please see the listing in Citations.

A list of repositories of birdsong is here: Data repositories

A list of related works is here: Related articles and software

To suggest or contribute algorithms or repositories:

Please feel free to start an issue on the Github repository

https://github.com/NickleDave/hybrid-vocal-classifier/issues

or comment in the users’ group:

https://groups.google.com/forum/?hl=en#!forum/hvc-users/join

Code of Conduct

We welcome contributions to the codebase and the documentation,
and are happy to help first-time contributors through the process.
Project maintainers and contributors are expected to uphold
the code of conduct described here: Contributor Covenant Code of Conduct

Backstory

hvc was originally developed in the Sober lab [https://scholarblogs.emory.edu/soberlab/]
as a tool to automate annotation of birdsong (as shown in the picture above).
It grew out of a submission to the
SciPy 2016 conference [https://conference.scipy.org/proceedings/scipy2016/david_nicholson.html]
and later developed into a library,
as presented in this talk: https://youtu.be/BwNeVNou9-s

Tutorial

“autolabeling” with k-Nearest Neighbors

This tutorial will walk you through using hvc to
automatically label Bengalese finch song with
the k-Nearest Neighbors algorithm.
We call this the “autolabel” workflow
(for more detail after going through this tutorial,
please see autolabel in the workflows: how to work with hvc
section of How-To Guides.)

There’s three main modules in hvc that you will use in the
autolabel workflow: extract to extract features, select to
select a model, and predict to predict labels for unlabeled data.
The steps below walk you through doing that.

A convenient way to work through this tutorial would be in iPython, so
you might first start iPython from the commmand line, like this:

(my-hvc-environment) $ ipython

iPython is not installed automatically with hvc so you’ll need to
install it. If you’re using the conda package manager, this is as
easy as:

(my-hvc-environment) $ conda install ipython

You can also use Jupyter notebooks from the tutorial here:

https://github.com/NickleDave/hybrid-vocal-classifier-tutorial

First you import the library so you can work with it.

0. Label a small set of songs to provide training data for the models, typically ~20-40 songs.

Here you would label your own song, using your software of choice
(evsonganaly, Sound Analysis Pro, Praat) but for this example you can
download some data that is already hand labeled from a repository.

1. Pick a machine learning algorithm/model and the features used to train the model.

In this case we use the k-Nearest Neighbors (k-NN) algorithm. This
algorithm is quick to apply to data but at least one empirical study
shows that it does not give the best accuracy on Bengalese finch
song [http://conference.scipy.org/proceedings/scipy2016/david_nicholson.html].
You’ll use the features built into the library that have been tested
with k-NN. These features are based in part on those developed by the
Troyer lab (http://www.utsa.edu/troyerlab/software.html).

You specify the models and features in a configuration file (“config”
for short). More information about all the parameters in the config file
can be found on the page :ref:writing-extract-config. For now you
can just copy the text below and save it in some file. The config is
written in YAML, a language for writing data structures (such as
different types of variables in a programming language).

extract:
 spect_params:
 ref: evsonganaly
 segment_params:
 threshold: 1500 # arbitrary units of amplitude
 min_syl_dur: 0.01 # ms
 min_silent_dur: 0.006 # ms

 todo_list:
 -
 bird_ID : gy6or6
 file_format: evtaf
 feature_group:
 - knn
 data_dirs:
 - .\gy6or6\032612

 output_dir: .\gy6or6\

 labelset: iabcdefghjk

2. Extract features for that model from song files that will be used to train the model.

You call the extract module and pass it the name of the yaml
config file as an argument. In the example below, the config file was
saved as 'gy6or6_autolabel_example.knn.extract.config.yml'.

3. Pick the hyperparameters used by the algorithm as it trains the model on the data.

Now we use a convenience function to get an estimate of what value for
our hyperparameters will give us the best accuracy when we train our
machine learning models. The k-Nearest Neighbors algorithm has one main
hyperparameter, the number of neighbors \(k\) in feature space that
we look at to determine the label for a new syllable we are trying to
classify.

4. Train, i.e., fit the model to the data

5. Select the best model based on some measure of accuracy.

Again we use a config file. In the config file, we specify the name of
the feature file saved by hvc.extract. Again you can just copy and
paste the text below.

The key things to modify here are the hyperparameter :math:`k` and the
name of the feature file. You will choose the value for :math:`k` based
on your results from running ``hvc.utils.find_best_k``. You will get the
name of the feature file from the directory created when you ran
``hvc.extract``. The name of the directory will be something like
``extract_output_bird_ID_date``. Make sure that on the line that says
``feature_file:``, you paste the name of the feature file after the
colon. The name will have a format like ``summary_file_bird_ID_date``.

select:

 num_replicates: 10
 num_train_samples:
 start : 50
 stop : 250
 step : 50
 num_test_samples: 500

 models:
 -
 model_name: knn
 feature_list_indices: [0,1,2,3,4,5,6,7,8]
 hyperparameters:
 k : 4

 todo_list:
 - #1
 feature_file: .\gy6or6\extract_output_171031_214453\summary_feature_file_created_171031_214642
 output_dir: .\gy6or6\

Now you can use hvc.select to select the best model. hvc.select
takes the name of the config file as an argument, which in this example
is gy6or6_autolabel.example.select.knn.config.yml.

6. Using the fit model, predict labels for unlabeled data.

Here you also use a config file.

** The key things to modify here is the model_meta_file parameter.
hvc.select will also have created a directory, and for each model it
fit, it will have saved two files, a .model file and a .meta
file. The .meta file contains all the metadata that hvc needs to
be able to use the .model file. You choose whichever .meta file
gave you the best results according to the metric you’re using, e.g. the
default of average accuracy across syllable classes. You also need to
specify the directories with unlabeled data, under the data_dirs
section.**

predict:
 todo_list:
 -
 bird_ID : gy6or6
 file_format: evtaf
 data_dirs:
 - C:\Users\Seymour Snyder\Documents\example_song\032612
 model_meta_file: .\gy6or6\select_output_171031_215004\knn_k4\knn_200samples_replicate9.meta
 output_dir: .\gy6or6
 predict_proba: True
 convert: notmat

	In a text editor, open

	On the line that says model_meta_file:, after the colon, paste
the name of a meta file from the select output. The name will
have a format like summary_file_bird_ID_date.

	Below the line that says data_dirs:, after the dash, add the path
to the other folder of data that you downloaded.

Lastly you use the hvc.predict module to predict labels for new
syllables. hvc.predict also takes a config file name as an argument.
In this example the file name is
gy6or6_autolabel.example.knn.predict.config.yml.

parsed predict config
Changing to data directory: C:/Data/gy6or6_all_files/032612
Processing audio file 1 of 39.
Processing audio file 2 of 39.
...
Processing audio file 39 of 39.
predicting labels for features in file: features_from_032612_created_171206_013759
converting to .not.mat files

Congratulations! You have auto-labeled an entire day’s worth of data in
just a few minutes!

How-To Guides

This section provides more detailed “how-to” guides to consult.

	workflows: how to work with hvc

	how to write YAML configuration files
	how to write yaml files used by the select module

workflows: how to work with hvc

There are two main workflows for using hvc.
Click on the links below for a high-level overview of each:

	autolabel: for researchers that want to automate labeling of vocalizations.

	autocompare workflow: for researchers that want to compare different machine learning algorithms.

how to write YAML configuration files

Pages here explain in detail how to write YAML configuration files.

	how to write yaml files used by the select module
	what the select module gets out of the config file: models and data

	the models list

	the todo list

how to write yaml files used by the select module

As described in the introduction, a crucial step in using hybrid vocal classifier is
selecting which models to use. This can be done in an automated way using the select
module. Like the extract and predict modules, the select module works by parsing
configuration files. Below the steps are outlined in writing
the configuration files in yaml format.

what the select module gets out of the config file: models and data

	There are two required elements in a select config file, that

	
	correspond to the two main things that the select module needs to know:

	
	models: what models to test. A Python list of dictionaries, as described below.

	todo_list: where the data is to train and test those models. Another Python list of dictionaries,
also described below.

The parser that parses the select config file is written so that you don’t have to repeat yourself.
You can put one models list at the top of the file, and then for each dataset in the todo_list,
the select module will train and test all the models that are specified in that top-level models list. Like so:

..include

However you can also define a models dictionary for each todo_list, in case you need to test
different models for different datasets, and want to run them all from one script.

..include

the models list

To be parsed correctly, the models list needs to have the right structure.
In yaml terminology, this is a list.
Once parsed into Python, it becomes a list of dictionaries.
For that reason the structure is described in terms of the keys and values
required for each dictionary.
Each dictionary in the list represents one model that the select module will test.
There are a couple of required keys for each model dictionary.

required key 1: hyperparameters

These models are found using machine learning algorithms.
A model can be thought of as a function with parameters, like the beta terms of a linear
regression.
To find these parameters, the algorithm must train on the data, and this training also has
parameters, for example the number of neighbors used by the K-nearest neighbor algorithm.
These parameters of the algorithm are known as hyperparameters to distinguish them from
the parameters found by the algorithm.

the todo list

Reference

	yaml config
	spec for yaml config files

	spec for YAML files to configure feature extraction

	spec for YAML files to configure model selection

	spec for YAML files to configure label prediction

	Features
	named features

	models
	k-Nearest Neighbors (kNN)

	API reference
	hvc

yaml config

	spec for yaml config files
	model_selection

	prediction

	parameters

	spec for YAML files to configure feature extraction
	structure

	required key: todo_list

	optional keys

	specification for dictionaries in todo_list
	required keys

	specification for spect_params and segment_params dictionaries

	example extract.config.yml files

	references

	spec for YAML files to configure model selection
	structure

	required key: todo_list

	optional keys

	specification for dictionaries in todo_list
	required keys

	optional keys

	specification for models list of dicts

	example select_config.yml

	spec for YAML files to configure label prediction
	structure

	required key: todo_list

	specification for dictionaries in todo_list
	required keys

	example predict_config.yml

spec for yaml config files

This document specifies the structure of HVC config files written in yaml.
It is a painfully dry document that exists to guide the project code,
not to teach someone how to write HVC config files. For a gentle
introduction to writing config files, please see the
writing_config_files.

Essentially, each config file specifies a list of jobs. Each job in
a list will typically correspond to data files from one bird.

Config files consist of three sections:

	global_config: parameters that apply to all jobs

	model_selection: list of jobs for selecting machine learning models

	prediction: list of jobs that apply models to unclassified data

global_config
As the name implies, parameters in the global_config section apply to all jobs.
The global_config is a dictionary of dictionaries.

Example:
``` yaml
global_config:



	spect_params :

	samp_freq : 32000 # Hz
window_size : 512
window_step : 32
freq_cutoffs : [1000,8000]



	neural_net :

	syl_spect_width : 300








```


model_selection

	model_selection is a list of jobs. Each job is a dictionary.

	Hence model_selection is a list of dictionaries.

Each job, i.e. each item in the list, is marked with an empty dash.
Below each empty dash appear the keys and values that
make up the dictionary.

A job in the ‘model_selection` section must include the following
keys:

	bird_ID : string, alphanumeric, identifies bird

	train : dictionary with parameters for training dataset

	test : dictionary with parameters for testing dataset
- both train and test contain a list dirs. Each item in dirs

is a string, and that string must be a path to a directory of
audio files (expected to contain song from the bird bird_ID).

	output_dir : string, directory where output will be saved. HVC

creates a new subfolder in the given directory.
- labelset : string, labels used for syllabes. Only syllables with
the labels in labelset will be included in the training and testing

datasets.

**If a parameter is defined in global_config and then defined again in
a job, the value defined in the job takes precedence over the

global_config value, but only for that job.**

Example:
``` yaml
model_selection: # list of dictionaries, dash without key next to is a list item so each dictionary is an item in the list



	
	# i.e. this is dictionary 1

	bird_ID : gr41rd51


	train :

	
	dirs:

	
	C:DATAgr41rd51pre_surgery_baseline06-21-12










	test :

	
	dirs:

	
	C:DATAgr41rd51pre_surgery_baseline06-19-12


	C:DATAgr41rd51pre_surgery_baseline06-20-12


	C:DATAgr41rd51pre_surgery_baseline06-22-12












output_dir: C:DATAgr41rd51

labelset : iabcdefgjkm


	spect_params# not required, but will take precedence over spect_params in global_config

	samp_freq : 32000 # Hz
window_size : 512
window_step : 32
freq_cutoffs : [1000,10000]
















```


prediction

Like model_selection, the prediction section is a list of job
dictionaries.

	A job in the ‘prediction` section must include the following keys:

	
	bird_ID : string, alphanumeric, identifies bird

	model_file : string, a file name. Either a scikit-learn model that

has been `pickle`d or `dump`ed by joblib, or an hdf5 model output by
Keras.


``` yaml
prediction:



	bird_ID : gr41rd51
model_file : gr41rd51_svm.pkl







```


parameters

	The parameters listed below can appear in either global_config or a job.

	
	
	spect_params :

	
	samp_freq : integer

	window_size : integer

	window_step : integer

	freq_cutoffs : list

	
	num_train_songs :

	
	start : integer

	stop : integer

	step : integer

	
	num_train_samples :

	
	start : integer

	stop : integer

	step : integer

	
	models :

	
	knn

	linsvm

	svm

	neural_net

spec for YAML files to configure feature extraction

This document specifies the structure of HVC config files written in YAML.

structure

Every extract.config.yml file should be written in YAML as a dictionary with
(key, value) pairs.
In other words, any YAML file that contains a configuration for feature extraction
should define a dictionary named extract with keys as outlined below.

required key: todo_list

	Every extract.config.yml file has exactly one required key at the top level:

	
	todo_list: list of dicts

	list where each element is a dict.
each dict sets parameters for a ‘job’, typically
data associated with one set of vocalizations.

optional keys

extract.config.yml files may optionally define two other keys at the same level as todo_list.
Those keys are spect_params and segment_params. As might be expected, spect_params is a dict
that contains parameters for making spectrograms. The segment_params dict contains parameters for
segmenting song. Specifications for these dictionaries are given below.

When defined at the same level as todo_list they are considered “default” and apply to all items in the list.
If an element in todo_list defines different values for any of these keys,
the value assigned in that element takes precedence over the default value.

specification for dictionaries in todo_list

required keys

	Every dict in a todo_list has the following required keys:

	
	bird_ID : str
for example, bl26lb16

	file_format: str
one of {'evtaf','koumura'}

	data_dirs: list of str
directories containing data
each str must be a valid directory that can be found on the path
for example

- C:\DATA\bl26lb16\pre_surgery_baseline\041912
- C:\DATA\bl26lb16\pre_surgery_baseline\042012

	output_dir: str
directory in which to save output
if it doesn’t exist, HVC will create it
for example, C:\DATA\bl26lb16\

	labelset: str
string of labels corresponding to labeled segments
from which features should be extracted.
Segments with labels not in this str will be ignored.
Converted to a list but not necessary to enter as a list.
For example, iabcdef

Finally, each dict in a todo_list must define either
feature_list or a feature_group

	
	feature_listlist

	named features. See the list of named features here:
named_features

	
	feature_groupstr or list

	named group of features, list if more than one group
one of {'knn','svm'}

	Note that a todo_list can define both a feature_list
and a feature_group. In this case features from the feature_group
are added to the feature_list.

Additional variables are added to the feature files that are output by
featureextract.extract to keep track of which features belong to which
feature group.

specification for spect_params and segment_params dictionaries

	
	spect_params: dict

	parameters to calculate spectrogram
keys correspond to parameters/arguments passed to Spectrogram class for __init__.
must have either a ref key or the nperseg and noverlap keys
as defined below:

	refstr

	one of {'tachibana','koumura'}
Use spectrogram parameters from a reference.
'tachibana' uses spectrogram parameters from 1,
'koumura' uses spectrogram parameters from 2.

	npersegint

	numper of samples per segment for FFT, e.g. 512

	noverlapint

	number of overlapping samples in each segment

	the following keys are all optional for spect_params:

	
	freq_cutoffstwo-element list of integers

	limits of frequency band to keep, e.g. [1000,8000]
Spectrogram.make keeps the band:

freq_cutoffs[0] >= spectrogram > freq_cutoffs[1]

	windowstr

	window to apply to segments
valid strings are 'Hann', 'dpss', None
Hann – Uses np.Hanning with parameter M (window width) set to value of nperseg
dpss – Discrete prolate spheroidal sequence AKA Slepian.

Uses scipy.signal.slepian with M parameter equal to nperseg and
width parameter equal to 4/nperseg, as in 2.

	filter_funcstr

	filter to apply to raw audio. valid strings are 'diff' or None
'diff' – differential filter, literally np.diff applied to signal as in 1.
None – no filter, this is the default

	spect_funcstr

	which function to use for spectrogram.
valid strings are ‘scipy’ or ‘mpl’.
'scipy' uses scipy.signal.spectrogram,
'mpl' uses matplotlib.matlab.specgram.
Default is 'scipy'.

	log_transform_spectbool

	if True, applies np.log10 to spectrogram to increase range. Default is True.

	segment_params: dict

	parameters for dividing audio into segments, defined below
with the following keys

	thresholdint

	value above which amplitude is considered part of a segment. default is 5000.

	min_syl_durfloat

	minimum duration of a segment. default is 0.02, i.e. 20 ms.

	min_silent_durfloat

	minimum duration of silent gap between segment. default is 0.002, i.e. 2 ms.

example extract.config.yml files

These are some of the extract.config.yml files used for testing, found in
hybrid-vocal-classifier/tests//data_for_tests/config.yml/:

extract:
 spect_params:
 ref: tachibana
 segment_params:
 threshold: 1500 # arbitrary units of amplitude
 min_syl_dur: 0.01 # ms
 min_silent_dur: 0.006 # ms

 todo_list:
 -
 bird_ID : gy6or6
 file_format: cbin
 feature_group:
 - knn
 data_dirs:
 - ../cbins/gy6or6/032312
 - ../cbins/gy6or6/032412

 output_dir: replace with tmp_output_dir

 labels_to_use: iabcdefghjk

extract:
 spect_params:
 ref: tachibana
 segment_params:
 threshold: 1500 # arbitrary units of amplitude
 min_syl_dur: 0.01 # ms
 min_silent_dur: 0.006 # ms

 todo_list:
 -
 bird_ID : gy6or6
 file_format: cbin
 feature_group:
 - svm
 data_dirs:
 - ../cbins/gy6or6/032312
 - ../cbins/gy6or6/032412

 output_dir: replace with tmp_output_dir

 labels_to_use: iabcdefghjk

extract:
 spect_params:
 ref: koumura
 segment_params:
 threshold: 1500 # arbitrary units of amplitude
 min_syl_dur: 0.01 # ms
 min_silent_dur: 0.006 # ms

 todo_list:
 -
 bird_ID : gy6or6
 file_format: cbin
 feature_list:
 - flatwindow
 data_dirs:
 - ../cbins/gy6or6/032312
 - ../cbins/gy6or6/032412

 output_dir: replace with tmp_output_dir

 labels_to_use: iabcdefghjk

references

	1(1,2)

	Tachibana, Ryosuke O., Naoya Oosugi, and Kazuo Okanoya. “Semi-

	automatic classification of birdsong elements using a linear support vector

	machine.” PloS one 9.3 (2014): e92584.

	2(1,2)

	Koumura, Takuya, and Kazuo Okanoya. “Automatic recognition of element

classes and boundaries in the birdsong with variable sequences.”
PloS one 11.7 (2016): e0159188.

spec for YAML files to configure model selection

This document specifies the structure of HVC config files written in
YAML.

structure

Every select.config.yml file should be written in YAML as a dictionary with (key, value) pairs.
In other words, any YAML file that contains a configuration for model selection should define
a dictionary named select with keys as outlined below.

required key: todo_list

	Every select.config.yml file has exactly one required key at the top level:

	
	todo_list: list of dicts

	list where each element is a dict.
each dict sets parameters for a ‘job’, typically
data associated with one set of vocalizations.

optional keys

select.config.yml files may optionally define other keys at the same level as todo_list.
Those keys are:

	num_replicates: int

	number of replicates, i.e. number of folds for cross-validation

	num_test_samples: int

	number of samples from feature file to put in testing set

	num_train_samples: int

	number of samples from feature file to put in training set

	models: list

	list of dictionaries that define models to be tested on features

When defined at the same level as todo_list they are considered default.
If an element in todo_list defines different values for any of these keys,
the value assigned in that element takes precedence over the default value.

specification for dictionaries in todo_list

required keys

	Every dict in a todo_list has the following required keys:

	
	feature_file : str
for example:
C:\Data\gy6or6\extract_output_170711_0104\summary_feature_file_created_170711_0104

	output_dir: str
path to directory in which to save output
if it doesn’t exist, HVC will create it
for example, C:\DATA\bl26lb16\

optional keys

As stated above, these can all be defined at the top level of the file. If they are also defined
for any dict in a todo_list, then that definition will override the top-level definition.

	
	models: list of dicts

	dictionary of models, as defined below.
Required if not defined at top level of file.

	
	num_replicates: int

	number of replicates, i.e. number of folds for cross-validation

	
	num_test_samples: int

	number of samples from feature file to put in testing set

	
	num_train_samples: int

	number of samples from feature file to put in training set

specification for models list of dicts

	Every dict in a models list has the following required keys:

	
	
	model_name: str

	name of model, e.g. ‘svm’

	
	hyperparameters: dict

	with hyperparameters defined for each model

Every dict in a models list must also specify the features with which to train the model.
One of the following is valid, as specified in validation.yml.

	
	feature_list_indices: list of ints

	corresponding to elements in list of feature names in feature_file
e.g., [0,1,2,5,7]

	
	feature_group: str

	name of a feature group: one of {'knn','svm'}

	
	neuralnet_input: str

	name of input for am artificial neural net: {'flatwindow'}

example select_config.yml

These are some of the select.config.yml files used for testing, found in
hybrid-vocal-classifier/tests/data_for_tests/config.yml/:

spec for YAML files to configure label prediction

This document specifies the structure of HVC config files written in
YAML.

structure

Every predict.config.yml file should be written in YAML as a dictionary with (key, value) pairs
In other words, any YAML file that contains a configuration for feature extraction
should define a dictionary named ‘predict` with keys as outlined below.

required key: todo_list

	Every predict.config.yml file has exactly one required key at the top level:

	
	todo_list: list of dicts

	list where each element is a dict.
each dict sets parameters for a ‘job’, typically
data associated with one set of vocalizations.

specification for dictionaries in todo_list

required keys

	Every dict in a todo_list has the following required keys:

	
	bird_ID : str
for example, bl26lb16

	file_format: str
{‘evtaf’,’koumura’}

	data_dirs: list of str
directories containing data
each str must be a valid directory that can be found on the path
for example

- C:\DATA\bl26lb16\pre_surgery_baseline\041912
- C:\DATA\bl26lb16\pre_surgery_baseline\042012

	model_file: str
filename of machine learning model / neural network that will be used to predict labels for syllables
example: somedir/select_output_170814_005430/knn/knn_100samples_replicate0

	output_dir: str
directory in which to save output
if it doesn’t exist, HVC will create it
for example, C:\DATA\bl26lb16\

	predict_proba : bool
If True, calculate probabilities for predicted labels.

example predict_config.yml

These are some of the predict.config.yml files used for testing, found in
hybrid-vocal-classifier/tests/data_for_tests/config.yml/:

Features

This section contains information on engineered features that hvc provides
for machine learning models.

	named features
	feature group Tachibana:

named features

These features are pre-defined and can be referred to by name in the feature_list of YAML files for extract.

feature group Tachibana:

	mean_spectrum

	mean_delta_spectrum : 5-order delta of spectrum

	mean_cepstrum

	mean_delta_cepstrum : 5-order delta of cepstrum

	dur : duration

	mA : additional subset of features listed below

	SpecCentroid

	SpecSpread

	SpecSkewness

	SpecKurtosis

	SpecFlatness

	SpecSlope

	Pitch

	PitchGoodness

	Amp

References

	1

	Tachibana, Ryosuke O., Naoya Oosugi, and Kazuo Okanoya. “Semi-

	automatic classification of birdsong elements using a linear support vector

	machine.” PloS one 9.3 (2014): e92584.

models

	k-Nearest Neighbors (kNN)

k-Nearest Neighbors (kNN)

API reference

hvc

	hvc package
	Subpackages
	hvc.features package
	Submodules

	hvc.features.extract module

	hvc.features.knn module

	hvc.features.tachibana module

	Module contents

	hvc.neuralnet package
	Submodules

	hvc.neuralnet.conv_models module

	hvc.neuralnet.models module

	Module contents

	hvc.parse package
	Submodules

	hvc.parse.extract module

	hvc.parse.predict module

	hvc.parse.select module

	Module contents

	Submodules

	hvc.audiofileIO module

	hvc.evfuncs module

	hvc.featureextract module

	hvc.koumura module

	hvc.labelpredict module

	hvc.metrics module

	hvc.modelselect module

	hvc.parseconfig module

	hvc.randomdotorg module

	hvc.utils module

	Module contents

hvc package

Subpackages

	hvc.features package
	Submodules

	hvc.features.extract module

	hvc.features.knn module

	hvc.features.tachibana module

	Module contents

	hvc.neuralnet package
	Submodules

	hvc.neuralnet.conv_models module

	hvc.neuralnet.models module

	Module contents

	hvc.parse package
	Submodules

	hvc.parse.extract module

	hvc.parse.predict module

	hvc.parse.select module

	Module contents

Submodules

hvc.audiofileIO module

hvc.evfuncs module

hvc.featureextract module

hvc.koumura module

hvc.labelpredict module

hvc.metrics module

hvc.modelselect module

hvc.parseconfig module

hvc.randomdotorg module

hvc.utils module

Module contents

hvc.features package

Submodules

hvc.features.extract module

hvc.features.knn module

hvc.features.tachibana module

Module contents

hvc.neuralnet package

Submodules

hvc.neuralnet.conv_models module

hvc.neuralnet.models module

Module contents

hvc.parse package

Submodules

hvc.parse.extract module

hvc.parse.predict module

hvc.parse.select module

Module contents

Development

	This section provides more detail for developers, including:

	
	Descriptions of how the code base works under the hood

	a roadmap for the project

	code base
	parse package, extract module

	development roadmap
	immediate priority

	not as immediate priority

	bells and whistles

code base

These pages contain information on the code base and its design,
as a reference for development, including pseudocode-like descriptions
of functions to orient someone reading the code.

	parse package, extract module
	validate_yaml

	_validate_todo_list_dict

	_validate_feature_group_and_convert_to_list

parse package, extract module

The extract module parses extract.config.yml files.

Here’s a rough outline of how it works.

parseextract.py contains the following functions:
- validate_spect_params
- validate_segment_params
- _validate_feature_group_and_convert_to_list
- _validate_todo_list_dict
- validate_yaml

validate_yaml

validate_yaml is the main function; it gets called by parse.

_validate_todo_list_dict

_validate_todo_list_dict is called by validate_yaml when it finds a key todo_list whose value is a list of dicts.

_validate_feature_group_and_convert_to_list

This function validates feature groups, which are validated differently than feature lists.
Feature lists are validated by making sure every element in the list is a string found within a valid features list,
which is a concatenation of all the features listend in feature_groups.yml in the parse module.

The parsing of a feature_group key is a little more complicated. The first step is to make sure
the group or groups appear in the dictionary of valid feature groups in hvc/parse/feature_groups.yml’.
The keys of the dictionary of valid feature groups are the valid feature group names,
and the values of the dictionary are the actual lists of features.
If each `str in `feature_group1 is s a valid feature group, then the list of features is taken from the dictionary

of valid feature groups. The list is then validated by comparing it to the list of all features in features.yml.

This is to make sure the developer didn’t make a typo. If feature_group is a list of feature group names,
then feature_list will consist of all features from all groups in the list. A vector of the same length as
the new feature list has values that indicate which feature group each element in the new feature list belongs to.
This vector is named feature_list_group_ID. A dict named ftr_group_dict is also returned,

where each key is a name of a feature group and its

corresponding value is the ID number given to that feature group. Using this dict and the identity array,
hvc/parse/select can pull the correct features out of a feature array given a feature group name.

Example:
```Python
>>> ftr_tuple = _validate_feature_group_and_convert_to_list(feature_group=[‘knn’,’svm’])

>>> ftr_tuple[0]





[‘duration group’,’preceding syllable duration’ … ]  # and so on

>>> ftr_tuple[1]






np.ndarray([0,0,0,0,0,1,1,1,1,1])  # some array with one of two ID numbers




>>> len(ftr_typle[0]) = ftr_tuple[1].shape[-1]





True

>>> ftr_tuple[2]





{‘knn’: 0, ‘svm’: 1}
```

If a feature_list was passed to this function along with feature_group, the features from the feature groups are
appended to the feature_list, and in the feature_group_ID vector, the original features from the original feature
list have a value of None.

development roadmap

Here’s a list of features with rough timelines.

immediate priority

	parsers for different file formats

	automate build

	mostly complete test coverage

not as immediate priority

bells and whistles

Index

Citations

	KOGAN1998

	Kogan, Joseph A., and Daniel Margoliash.

“Automated recognition of bird song elements from continuous recordings using
dynamic time warping and hidden Markov models: A comparative study.”
The Journal of the Acoustical Society of America 103.4 (1998): 2185-2196.

	KOUMURA2016

	Koumura, Takuya, and Kazuo Okanoya.

“Automatic Recognition of Element Classes and Boundaries in the Birdsong with Variable Sequences.”
PloS one 11.7 (2016): e0159188.

	NICHOLSON2016

	Nicholson, David A.

“Comparison of machine learning methods applied to birdsong element classification.”
Proceedings of the 15th Python in Science Conference. 2016.

	TACHIBANA2014

	Tachibana, Ryosuke O., Naoya Oosugi, and Kazuo Okanoya.

“Semi-automatic classification of birdsong elements using a linear support vector machine.”
PloS one 9.3 (2014): e92584.

	TROYERLAB2012

	http://www.utsa.edu/troyerlab/software.html

Contributor Covenant Code of Conduct

Our Pledge

In the interest of fostering an open and welcoming environment, we as
contributors and maintainers pledge to making participation in our project and
our community a harassment-free experience for everyone, regardless of age, body
size, disability, ethnicity, gender identity and expression, level of experience,
nationality, personal appearance, race, religion, or sexual identity and
orientation.

Our Standards

Examples of behavior that contributes to creating a positive environment
include:

	Using welcoming and inclusive language

	Being respectful of differing viewpoints and experiences

	Gracefully accepting constructive criticism

	Focusing on what is best for the community

	Showing empathy towards other community members

Examples of unacceptable behavior by participants include:

	The use of sexualized language or imagery and unwelcome sexual attention or
advances

	Trolling, insulting/derogatory comments, and personal or political attacks

	Public or private harassment

	Publishing others’ private information, such as a physical or electronic
address, without explicit permission

	Other conduct which could reasonably be considered inappropriate in a
professional setting

Our Responsibilities

Project maintainers are responsible for clarifying the standards of acceptable
behavior and are expected to take appropriate and fair corrective action in
response to any instances of unacceptable behavior.

Project maintainers have the right and responsibility to remove, edit, or
reject comments, commits, code, wiki edits, issues, and other contributions
that are not aligned to this Code of Conduct, or to ban temporarily or
permanently any contributor for other behaviors that they deem inappropriate,
threatening, offensive, or harmful.

Scope

This Code of Conduct applies both within project spaces and in public spaces
when an individual is representing the project or its community. Examples of
representing a project or community include using an official project e-mail
address, posting via an official social media account, or acting as an appointed
representative at an online or offline event. Representation of a project may be
further defined and clarified by project maintainers.

Enforcement

Instances of abusive, harassing, or otherwise unacceptable behavior may be
reported by contacting the project team at nicholdav@gmail.com. All
complaints will be reviewed and investigated and will result in a response that
is deemed necessary and appropriate to the circumstances. The project team is
obligated to maintain confidentiality with regard to the reporter of an incident.
Further details of specific enforcement policies may be posted separately.

Project maintainers who do not follow or enforce the Code of Conduct in good
faith may face temporary or permanent repercussions as determined by other
members of the project’s leadership.

Attribution

This Code of Conduct is adapted from the Contributor Covenant homepage [https://www.contributor-covenant.org], version 1.4,
available at https://www.contributor-covenant.org/version/1/4/code-of-conduct.html

Installation

Step by step instructions are below.

If you need help, please join our email list at hvc-users@google-groups.com and ask a new question.

Note that the $ and > prompts below are just to indicate that you’re in the command line,
you don’t have to type them. If the command is the same on Mac/Linux/Windows then only the $
prompt is shown.

Easy install for general users

using the Anaconda distribution and the conda package manager

The following should work on Linux, Mac, and Windows.

1. Install the Anaconda distribution for your operating system: https://www.anaconda.com/download/

2. Add the conda forge channel which contains some of the libraries necessary for hybrid-vocal-classifier to run.

$ conda config --add channels conda-forge

For more about conda forge, see: https://conda-forge.org

If you have previously added this channel, you do not need to do so again.

You can check whether it’s added by running the following command:

$ conda config --show

If the channel is added, you should see something like the following lines in the config output:

channels:
- conda-forge

3. Create a conda environment.

$ conda create -n hvc python=3.5

Currently the environment must use Python 3.5.

The environment allows you have to install the libraries necessary for hybrid-vocal-classifier to run.

For a more in-depth explanation see https://conda.io/docs/user-guide/concepts.html#conda-environments.

4. Activate the environment

Mac/Linux:

$ source activate hvc

Windows:

> activate hvc

After you activate the environment, its name will appear in parentheses before the terminal prompt.

(hvc)$

5. Install hybrid-vocal-classifier into the environment

(hvc)$ conda install -c nickledave hybrid-vocal-classifier

6. Test whether the install worked.

(hvc)$ python

>>> import hvc

If the above line executes without any module not found error,
you have successfully installed hybrid-vocal-classifier.

Install of bleeding-edge / development version

using the Anaconda distribution and the conda package manager

1. Install the Anaconda distribution for your operating system: https://www.anaconda.com/download/

2. Use `conda to create an environment for the bleeding-edge version

$ conda create --name hvc-bleeding-edge python=3.5 numpy scipy scikit-learn matplotlib pyyaml keras tensorflow

conda will ask you if you want to install these packages and their dependencies, say [y]es.

You may need to add the conda forge channel in order to find binaries of these packages that will work on your

operating system. To add the channel, you execute the following:

$ conda config --add channels conda-forge

More about conda forge here: https://conda-forge.org/

3. git clone the repository

(hvc-bleeding-edge) $ git clone https://github.com/NickleDave/hybrid-vocal-classifier.git

4. Activate the environment so you can work with it.

$ source activate hvc-bleeding-edge

5. use pip to install the hvc code into the conda environment, using the “-e” flag (for “editable”):

(hvc-bleeding-edge) pip install -e hybrid-vocal-classifier

To do this, you need to be in the parent directory just above the hybrid-vocal-classifier directory

(which you probably already are if you just executed the git clone command)

so that pip can find the necessary setup.py file for the install.

Now whenever you want to get the most up-to-date version you can execute

(hvc-bleeding-edge) $ git pull

and as long as you haven’t made any changes to the code base,

git should just pull new changes in from the remote and merge them with the old version.

You probably also want to install Jupyter and iPython in the bleeding-edge environment.

(hvc-bleeding-edge) $ conda install ipython jupyter

Beware: confusingly, you can start iPython and Jupyter from the command line

even if they are not installed in your environment,

but you will be running the versions in the root conda environment,

and so iPython and Jupyter won’t know that hvc et al. are installed.

You should now be able to start iPython or a Jupyter notebook and import hvc to work with it.

 # intro notes

hybrid-vocal-classifier (or HVC for short) is a Python library whose
goal is to make it easy to apply machine learning algorithms that
automatically classify the elements of birdsong, often referred to as

syllables.

Writing scripts that run HVC requires almost no coding.
The user writes configuration files in YAML, a language for specifying
data structures. YAML is meant to be easy for humans to read and write.
Most users will only have to copy the example .yml files and then
change a couple of parameters.

Here’s how you’d run an analysis using HVC:

```Python
import hvc

hvc.extract(‘extract_config.yml’)
hvc.select(‘select_config.yml’)
hvc.predict(‘predict_config.yml’)
```

But, why?
Scientists that study birdsong at the level of individual birds often
have to label the syllables of each bird’s song by hand in order to get

results.

Because birds can sing hundreds of songs a day, it requires many
person-hours to label song.

In addition, in many songbird species that have been studied,
each individual learns a song that is similar but not exactly the same
as the song of the bird or birds that tutored it.

Therefore any software that automates the process of labeling syllables
must classify them with very high accuracy and must do so in a way that
is robust across the songs of many different individuals from a species.

As stated, the primary goal of the HVC package is to make it easier
for any scientist to apply machine-learning algorithms to birdsong.

The secondary goal of the package is to facilitate comparisons of
different machine learning algorithms. Several groups have published
on various algorithms but little work has been done to compare accuracy.

A final goal is to entice the field of artificial intelligence to study
birdsong. Birdsong presents an ideal test-bed to experiment with machine
learning algorithms that segment time-series data, i.e., that decide at
what time point each segment starts and stops. Unlike in speech,
syllables in birdsong are typically discrete elements separated from
each other by brief silent gaps. Algorithms for speech-to-text have
successfully avoided dealing with segmentation, but there are many cases
where it would be useful to have high accuracy segments (e.g., automated
analysis of speech disorders where duration may be affected).

<sub>* A data serialization language–for the non-computer science
people–is a language that represents data types
like an array in such a way that they can be easily stored and/or
transmitted.</sub>

More about hybrid-vocal-classifier and songbird science

more about hybrid-vocal-classifier

Scientists that study how birdsong at the level of individual birds often
have to label the syllables of each bird’s song by hand in order to get
results. Because birds can sing hundreds of songs a day, it requires many
person-hours to label song. In addition, in many songbird species that have been studied,
each individual learns a song that is similar but not exactly the same
as the song of the bird or birds that tutored it. Therefore any software
that automates the process of labeling syllables
must classify them with very high accuracy and must do so in a way that
is robust across the songs of many different individuals from a species.

The primary goal of hybrid-vocal-classifier is to make it easier
for any scientist to apply machine-learning algorithms to birdsong.

The secondary goal of the package is to facilitate comparisons of
different machine learning algorithms. Several groups have published
on various algorithms: for a list of some of the algorithms
used by this library, see Citations, and see related works
in Related articles and software. Along with the library, a large dataset containing
days of hand-labeled song was released.
Open repositories were crucial for other advances in machine learning.
A list with links to that dataset and others can be found on the Data repositories page.

To suggest or contribute algorithms or repositories:

Please feel free to start an issue on the Github repository

https://github.com/NickleDave/hybrid-vocal-classifier/issues

or send a message on the mailing list:

hvc-users@google-groups.com

A final goal is to further develop the links between
machine learning, artificial intelligence, and the study of
birdsong. Obviously, the work most related to this library
is in automated speech recognition. Birdsong presents an
ideal test-bed to experiment with related machine
learning algorithms, e.g., for segmenting time-series data.

more about songbird science

Songbirds provide a model system to understand how the brain learns and produces
speech and other sequential motor skills acquired by imitation, like
playing the piano or shooting a basketball. Like babies learning to talk,
songbirds learn their song from an adult “tutor” during
a sensitive period in development . Each individual bird
has its own unique song, often very similar to the song of the bird that tutored it.
The songbird brains contain a specialized network of areas required for learning and producing song.
Although this network, known as the song system, is found only in songbird brains,
it has evolved on top of the basic floor plan that appears in all vertebrate brains, including humans.
By understanding the song system, we can understand more about our own brain.
Many other aspects of songbird behavior can tell us more about ourselves and our environment,
and by studying their vocalizations we open a window into their world.
For more information, check out http://songbirdscience.com/

hybrid-vocal-classifier was developed in
the Sober lab [https://scholarblogs.emory.edu/soberlab/]

Related articles and software

automated classification of birdsong elements

with support vector machines
Tachibana, Ryosuke O., Naoya Oosugi, and Kazuo Okanoya.
“Semi-automatic classification of birdsong elements using a linear support vector machine.”
PloS one 9.3 (2014): e92584.
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0092584

with convolutional neural nets
Koumura, Takuya, and Kazuo Okanoya.
“Automatic Recognition of Element Classes and Boundaries in the Birdsong with Variable Sequences.”
PloS one 11.7 (2016): e0159188.
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0159188
https://github.com/cycentum/birdsong-recognition

with k-nearest neighbors
Songbrowser. Troyer lab.
http://www.utsa.edu/troyerlab/software.html

semi-automated clustering methods

Daou, Johnson, Wu, Bertram.
“A Computational Tool for Automated Large-Scale Analysis and Measurement of Bird-Song Syntax”
Journal of Neuroscience Methods, 210:147-160, 2012.
http://www.sciencedirect.com/science/article/pii/S0165027012002841
http://www.math.fsu.edu/~bertram/software/birdsong/

Burkett, Zachary D., et al.
“VoICE: A semi-automated pipeline for standardizing vocal analysis across models.”
Scientific reports 5 (2015).
https://www.ibp.ucla.edu/research/white/CODE.html

automated analysis and similarity scores

Tchernichovski, O., Nottebohm, F., Ho, C.E., Bijan, P., Mitra, P.P.
“A procedure for an automated measurement of song similarity.”
Animal Behaviour 59 (2000): 1167-1176
http://soundanalysispro.com/

Mandelblat-Cerf, Yael, and Michale S. Fee.
“An automated procedure for evaluating song imitation.”
PloS one 9.5 (2014): e96484.
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0096484#s6
code: https://doi.org/10.1371/journal.pone.0096484.s002

Mets, David Gavin, and Michael S. Brainard.
“An Automated Approach to the Quantitation of Vocalizations
and Vocal Learning in the Songbird.”
bioRxiv (2017): 166124.
https://www.biorxiv.org/content/early/2017/07/20/166124

Soderstrom, Ken, and Ali Alalawi.
“Software for objective comparison of vocal acoustic features
over weeks of audio recording: KLFromRecordingDays.”
SoftwareX 6 (2017): 271-277.
http://www.sciencedirect.com/science/article/pii/S2352711017300523
code: https://github.com/soderstromk/KLFromRecordingDays

Data repositories

Bengalese Finch

“Bengalese Finch song repository”
https://figshare.com/articles/Bengalese_Finch_song_repository/4805749

“BirdsongRecognition”
https://figshare.com/articles/BirdsongRecognition/3470165

“Data from: A simple explanation for the evolution of complex song syntax in Bengalese finches”
https://datadryad.org//resource/doi:10.5061/dryad.6pt8g

Zebra Finch

Global Song Library:
http://songbirdscience.com/resources/behavior/global-song-library

“Data from: Horizontal transmission of the father’s song in the Zebra Finch (Taeniopygia guttata)”
https://datadryad.org//resource/doi:10.5061/dryad.7137r

Williams, H. (1997) Zebra Finch Song Archive.
“The songs archived here are the minimal length necessary to show all of the syllables sung by a given bird.”
i.e. there is only one .wav file per bird
http://web.williams.edu/Biology/Faculty_Staff/hwilliams/ZFsongs/

Cassin’s Vireo

Hedley, Richard (2016):
Data used in PLoS One article
“Complexity, Predictability and Time Homogeneity of Syntax in the Songs of Cassin’s Vireo (Vireo cassini)”
by Hedley (2016). figshare.
https://doi.org/10.6084/m9.figshare.3081814.v1

 # HVC workflow in detail
This document explains in detail how functions and modules work, mainly
as a reference for developers.

Take the example code from the intro notes page:
```Python
import hvc

hvc.extract(‘extract_config.yml’)
hvc.select(‘select_config.yml’)
hvc.predict(‘predict_config.yml’)
```

Here’s a step-by-step outline of what happens under the hood:
- import hvc

	automatically imports featureextract, labelpredict, and

	modelselect modules

	
	specifically, the extract, predict, and select functions

from their respective modules

	hvc.extract(‘extract_config.yml’)

	first parse.extract parses the config file

	for each element in todo_list from config
+ for each data directory datadir in todo_list:

	change to that directory

	get all the audio files in that directory with glob

	for each audo file:
+ run features.extract.from_file
+ add extracted features to features_from_all_files

	save all features in an output file

	hvc.select(‘select_config.yml’)

	hvc.predict(‘predict_config.yml’)

autocompare workflow

Here’s the steps in the workflow for comparing different machine learning models.

Bold terms are defined on the page describing this workflow in detail, linked below this list.

0. Label a small set of songs to provide training data for the models, typically ~20 songs.

1. Pick the models you will compare.

2. Extract features for those models from song files that will be used to train the model.

3. Pick the hyperparameters for the different models.

4. Fit the models to the data

5. Select the best model

autolabel

This page presents a high-level overview of the “autolabel” workflow. The description is aimed
at scientists studying songbirds that want to automate annotation of their data, without having
to know all the nitty-gritty details of machine learning.

Here’s the bare minimum background information you need to know:
To automate labeling of birdsong syllables, hvc implements previously proposed machine
learning algorithms. All the algorithms in hvc are supervised learning algorithms.
That means you need to provide them some hand-labeled training data. Using this data, the
algorithms “learn” to classify syllables. More precisely, the algorithms produce a function
that maps input features, such as acoustic parameters like pitch or duration, to a syllable class.
(This approach is distinct from clustering methods that can assign the identity of a syllable
to some class with little or no input from the user, and without labeling training data.
Unfortunately such algorithms are by and large still not as accurate as supervised learning
algorithms.)

That should hopefully give you just enough background follow the outline below
of the steps in the workflow for autolabeling vocalizations.

0. Label training data

Label a small set of songs to provide training data for the models, typically 20-40 songs.

from glob import glob
import hvc

0. create training data
In this case, we download already labeled data from an open repository.
String in quotes matches with the name of one of the folders in the repository.
hvc.utils.fetch('gy6or6.032612')

1. Pick a model

Pick a machine learning algorithm/model and the features used to train the model.
The models and features are specified in a configuration file (“config”) written in YAML,
a very simple language meant to represent data in way that’s easy for humans to read.

Currently the highest accuracy is obtained with the support vector machine with a radial
basis function (SVM-RBF) or a convolutional neural net model (“flatwindow”).
These results were obtained by the testing the models on the song of Bengalese finches.
At this time the only other model implemented is a k-Nearest Neighbors model (k-NN).
If you do not have a graphic processor unit (GPU), it will probably be easiest to use the SVM-RBF.
If you do have a GPU, you probably want to use the flatwindow model.

2. Extract features for that model from song files

Extract features for that model from the training data, i.e,. the song files
that will be used to train the model.

1. pick a model and 2. extract features for that model
Model and features are defined in extract.config.yml file.
hvc.extract('../../tutorial/gy6or6_autolabel_example.knn.extract.config.yml')

Each machine learning model is fit to a set of features. These are either acoustic parameters
extracted from the song or spectrograms of the song itself. More information about what features
to use can be found on the pages about each model.

3. Pick the hyperparameters

Pick the hyperparameters used by the algorithm as it trains the model on the data.
Hyperparameters can be thought of as the “knobs” on the algorithm that controls how it
learns. More on the hyperparameters for each algorithm can be found in the walkthroughs
for each algorithm on the main tutorial page.

3. pick hyperparameters for model
Load summary feature file to use with helper functions for
finding best hyperparameters.
summary_file = glob('./extract_output*/summary*')
summary_data = hvc.load_feature_file(summary_file)
In this case, we picked a k-nearest neighbors model
and we want to find what value of k will give us the highest accuracy
cv_scores, best_k = hvc.utils.find_best_k(summary_data['features'],
 summary_data['labels'],
 k_range=range(1, 11))

4. Fit the model to the data

Train, i.e., fit the model to the data

5. Select the best model

Select the best model based on some measure of accuracy.

4. Fit the **model** to the data and 5. Select the **best** model
hvc.select('../../tutorial/gy6or6_autolabel.example.select.knn.config.yml')

6. Predict labels for unlabeled data using the fit model.

Using the fit model, predict labels for unlabeled data.

6. **Predict** labels for unlabeled data using the fit model.
hvc.predict('../../tutorial/gy6or6_autolabel.example.predict.knn.config.yml')

FAQs

	How many files of hand-labeled song do I need to train good models?

Good question. Our current best estimate is that,
at least for Bengalese finch song,
you can get > 99.5% accuracy using the flatwindow convolutional neural net
model with 500 hand-labeled syllables.
https://github.com/NickleDave/ML-comparison-birdsong/blob/master/figure_code/analysis%20for%20scipy%202017%20talk.ipynb
Assuming that each file contains one
song bout where the bird sings 50 syllables, that would be 10 files of song. Not bad.

The best way to know for sure is to generate an accuracy curve.

 _static/comment-bright.png

_static/ajax-loader.gif

_static/down-pressed.png

_static/down.png

_static/comment-close.png

_static/comment.png

_static/file.png

_images/gr41rd41_song.png

_static/minus.png

nav.xhtml

 Table of Contents

 		
 hybrid-vocal-classifier (hvc)

 		
 Tutorial

 		
 “autolabeling” with k-Nearest Neighbors

 		
 0. Label a small set of songs to provide training data for the models, typically ~20-40 songs.

 		
 1. Pick a machine learning algorithm/model and the features used to train the model.

 		
 2. Extract features for that model from song files that will be used to train the model.

 		
 3. Pick the hyperparameters used by the algorithm as it trains the model on the data.

 		
 4. Train, i.e., fit the model to the data

 		
 5. Select the best model based on some measure of accuracy.

 		
 6. Using the fit model, predict labels for unlabeled data.

 		
 How-To Guides

 		
 workflows: how to work with hvc

 		
 how to write YAML configuration files

 		
 how to write yaml files used by the select module

 		
 Reference

 		
 yaml config

 		
 spec for yaml config files

 		
 spec for YAML files to configure feature extraction

 		
 spec for YAML files to configure model selection

 		
 spec for YAML files to configure label prediction

 		
 Features

 		
 named features

 		
 models

 		
 k-Nearest Neighbors (kNN)

 		
 API reference

 		
 hvc

 		
 Development

 		
 code base

 		
 parse package, extract module

 		
 development roadmap

 		
 immediate priority

 		
 not as immediate priority

 		
 bells and whistles

_static/up-pressed.png

_static/up.png

_static/plus.png

